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A B S T R A C T

Distributed environmental research infrastructures are important to support assessments of the effects of global
change on landscapes, ecosystems and society. These infrastructures need to provide continuity to address long-
term change, yet be flexible enough to respond to rapid societal and technological developments that modify
research priorities. We used a horizon scanning exercise to identify and prioritize emerging research questions
for the future development of ecosystem and socio-ecological research infrastructures in Europe. Twenty re-
search questions covered topics related to (i) ecosystem structures and processes, (ii) the impacts of anthro-
pogenic drivers on ecosystems, (iii) ecosystem services and socio-ecological systems and (iv), methods and
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research infrastructures. Several key priorities for the development of research infrastructures emerged.
Addressing complex environmental issues requires the adoption of a whole-system approach, achieved through
integration of biotic, abiotic and socio-economic measurements. Interoperability among different research in-
frastructures needs to be improved by developing standard measurements, harmonizing methods, and estab-
lishing capacities and tools for data integration, processing, storage and analysis. Future research infrastructures
should support a range of methodological approaches including observation, experiments and modelling. They
should also have flexibility to respond to new requirements, for example by adjusting the spatio-temporal design
of measurements. When new methods are introduced, compatibility with important long-term data series must
be ensured. Finally, indicators, tools, and transdisciplinary approaches to identify, quantify and value ecosystem
services across spatial scales and domains need to be advanced.

1. Introduction

A key issue for environmental research is to answer complex ques-
tions emerging from the grand environmental challenges facing
humanity. Scientific research is required to objectively inform how
society can mitigate and adapt to threats posed by climate change,
biodiversity loss, deteriorating water quality, resource supply, migra-
tion and food security (United Nations, 2015). Understanding multiple
aspects of global change requires long-term observations over large
spatial scales, experiments, comparative studies and sophisticated fa-
cilities for computation (Schimel and Keller, 2015). These are most
efficiently achieved through distributed research infrastructures, i.e.
multi-national geographically separated place-based entities that per-
form, facilitate or sponsor research (OECD, 2014), usually with relevant
stakeholders (Angelstam et al., 2019). Elements of these research in-
frastructures may vary in scope, size and instrumentation, but as part of
coordinated networks they facilitate research on overarching research
questions. Remote sensing techniques are an integral part of this con-
cept as they offer multiple opportunities to extend the spatial and
temporal scope. To steer planning and prioritization, it is necessary to
identify key issues and questions that distributed research infra-
structures should address.

Research infrastructures dedicated to long-term ecosystem research
are typically fragmented, unevenly distributed in space and focused
towards specific scientific questions (Haase et al., 2018). One initiative
trying to overcome these limitations is the European Long-Term Eco-
logical Research Network (LTER-Europe). Its main objective is to en-
hance the understanding of processes that shape ecosystems and socio-
ecological systems under global change (Mirtl et al., 2018). The

network currently comprises 25 national networks with a pool of
around 400 LTER sites (DEIMS-SDR 2019) and about 45 active LTSER
(Long-Term Socio-Ecological Research) platforms (Angelstam et al.,
2019; Haberl et al., 2006). These cover the main European ecosystem
types, climatic and land use gradients, and usually involve co-located
measurements of physical, chemical, biological and socio-economic
variables. LTER-Europe is part of the global network ILTER (Interna-
tional Long-Term Ecological Research). The Critical Zone Observatories
(CZO) represent another interdisciplinary research network created to
study the chemical, physical, and biological processes that shape Earth's
surface (Lin et al., 2011; White et al., 2015). The CZO program was
funded in 2007 by the U.S. National Science Foundation, and was ex-
tended to Europe in the SoilTrEC initiative (Banwart et al., 2011).
Currently there are around 230 sites registered in the global Critical
Zone Exploration Network (CZEN, 2019), many of them located in
Europe. The wide range of expertise, topics and measurements across
the ILTER and the CZO networks provides unique opportunities to
foster cross-disciplinary research. Nevertheless, different histories of
research sites have resulted in considerable heterogeneity in research
approaches, measurements and methods which hamper cross-site and
cross-network analyses. Therefore, LTER-Europe and the European CZO
community are collaborating in the EU funded project eLTER H2020
(LTER-Europe, 2019) to improve the existing network of LTER sites and
LTSER platforms and to implement an improved co-location approach
with Critical Zone Observatories in Europe.

The establishment and operation of research infrastructures need to
be based on a strategic research agenda (Haberl et al., 2006; NEON,
2011; TERN, 2013). Many aspects of global change are difficult to
predict since rapid societal changes and technological developments

Fig. 1. Conceptual scheme illustrating the identification of the 20 priority questions for future ecosystem research infrastructure development. Grey areas indicate
the initial collection of research questions while the prioritization process is highlighted in orange.
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may have unknown, unforeseen and potentially interactive effects on
ecosystems and social systems. Thus, long-term research strategies need
to be regularly reviewed to allow the most appropriate adjustment of
existing research infrastructures. Horizon scanning methods represent a
common tool to detect emerging issues by consulting a large group of
individuals (Sutherland et al., 2011). They have been applied in a range
of scientific fields such as conservation (Dicks et al., 2013), agriculture
(Pretty et al., 2010) and sustainability science (Shackleton et al., 2017).
Here we report on an extensive horizon scanning exercise that was
motivated by the current efforts to further enhance the LTER-Europe
and CZO site networks. The aim was to capture, classify and prioritize
research questions that need to be considered for the future develop-
ment of long-term ecosystem and socio-ecological research infra-
structures. The focus was on research questions that are currently
emerging or which address important knowledge gaps.

2. Methods

The horizon scanning presented in this work (Fig. 1) followed a
modified Delphi approach as described by Sutherland et al. (2015). The
core team (authors of this article) comprised 28 experts from a range of
disciplines (e.g. terrestrial and aquatic ecology, Earth science, soil sci-
ence, forest science, landscape ecology, sustainability science) origi-
nating from the international LTER and CZO communities as well as
scientists not linked to either community. People were selected from the
personal networks of the leading team (four people; MM, GG, NN, SK),
and hence do not represent a random sample of scientists. The core
team included both research infrastructure managers and scientists
using research infrastructures. Following Pretty et al. (2010) we did not
conduct a workshop but implemented several online surveys (Fig. 1).
The core team members collected emerging research questions in their
personal networks by spreading a link to an online survey. Thus, re-
search questions were obtained from both core team members and
other people who were invited by them to participate in the survey.
Survey participants were requested to identify emerging questions re-
lated to ecosystem and socio-ecological research that have not been
sufficiently addressed to date, and that form important gaps in
knowledge. They were also asked to provide requirements for future
ecosystem research infrastructure development. The survey was re-
stricted to terrestrial, freshwater and transitional water systems (coasts,
estuaries but no open marine systems) and encompassed both the biotic
and abiotic components of ecosystems as well as their relationships to
humans. Participation during all stages was anonymous, so that re-
sponses could not be linked to the identity or origin of participants.

A total of 98 research questions from 55 individuals (core team
members plus participants invited by them; see above) were collected
(Fig. 1, Supplementary material 1). Questions were consolidated to
eliminate duplicates and to edit language. This was done by the leading
team. Research questions were then assigned to four overarching
themes that reflect different levels of interaction between humans and
ecosystems (i-iii), or focus on methods and infrastructural needs (iv):

(i) Ecosystem structures and processes: Fundamental questions in
ecosystem research without explicitly linking them to human ac-
tivity (23 questions).

(ii) Impact of anthropogenic drivers on ecosystems: How humans alter
ecosystem structures and processes (33 questions).

(iii) Ecosystem services and socio-ecological systems: How humans
depend on ecosystems, and in which ways human societies may
respond to maintain essential ecosystem services (25 questions).

(iv) Methods and infrastructures: The methodological advancements
that are required to address complex issues in ecosystem research
(17 questions).

The categorization of questions also considered the additional ex-
planations provided by the contributors. Core team members were

asked to rank the consolidated research questions according to their
relevance for future ecosystem research infrastructure development on
a scale ranging from 1 (lowest) to 10 (highest relevance). For each
question a mean score was calculated. The four highest scored questions
per theme were chosen for discussion by the core team, in total 16
questions (Fig. 1). This stratification approach was chosen to reduce
potential bias due to the composition of the core team and to widen the
range of topics. Core team members were given the opportunity to
comment on this selection and to express their agreement or disagree-
ment. As a result of this discussion process questions were re-
formulated, merged or widened in scope. Further, core team members
were asked to name one additional question per theme from the list of
lower ranked questions that would deserve further consideration as
well and to justify their choice. The option to re-instate initially lower
ranked issues as part of the discussion process is implemented in many
Delphi-approaches (Sutherland et al., 2011). The highest ranked ques-
tions and possible alternatives were further consolidated and ranked
again using the same scale as described above. The resulting five
highest ranked questions within the four themes were included in the
list of the 20 most important research questions. These questions were
further refined by the horizon scanning core team. In the results section,
we consider each of the these 20 questions in turn, specify current gaps
in knowledge and set out the consequent needs for ecosystem research
infrastructure development.

3. Results

3.1. Research questions focusing on ecosystem structures and processes

Q1. How do changes in species diversity, functional diversity and
community composition affect ecosystem functioning?

It is generally accepted that biodiversity underpins the functioning
of ecosystems and that species loss can reduce functions such as bio-
mass production or decomposition (Tilman et al., 2014). To date, evi-
dence for the latter hypothesis is largely based on experiments in sim-
plified ecosystems, with few studies on real-world ecosystems with
complex trophic interactions (Tilman et al., 2014). Measures of func-
tional diversity have increasingly attracted attention as they can im-
prove understanding of mechanisms underlying ecosystem functioning
and the provision of ecosystem services (Cadotte et al., 2011), and the
response of communities to disturbances (Mouillot et al., 2013b).
Nevertheless, many aspects of the relationship between biodiversity
components and ecosystem functioning remain unexplored. It is still not
fully understood to what extent functions of particular species can be
compensated by others (functional redundancy, Mouillot et al. (2013a),
whether shifts in functional trait space can be used to quantify eco-
system resilience (Mori et al., 2013) and how trait variation changes in
relation to specific disturbances (Bjorkman et al., 2018; Kissling et al.,
2018b).

A basic requirement to address these questions is to further develop
biodiversity monitoring schemes that represent a wide range of taxo-
nomic groups, trophic levels, species traits, functional types, habitats
and ecosystems. To explore the relationships between species assem-
blages and ecosystem functioning, measurements of biodiversity and
abiotic variables need to be coordinated in space and time. Research
infrastructures will need to conform to established data standards to
enhance interoperability. This will maximize the potential to infer the
functionality of individual species and assemblages, and aid the de-
velopment of functional diversity indices that work across temporal and
spatial scales. As more trait information becomes available, the efforts
to compile such information in trait databases should be advanced (e.g.
Kattge et al., 2011). Such databases should explicitly consider in-
traspecific trait variability (Kissling et al., 2018b) to examine how this
variability affects whole communities (Bjorkman et al., 2018; Carmona
et al., 2015). In order to identify functions of individual species it is also
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necessary to establish facilities for experiments, for example enclosure
experiments to measure interacting effects of keystone and invasive
species on soil functions and productivity (Mahon and Crist, 2019).

Q2. How can we restore degraded soils in order to improve soil
functions and services?

Approximately one third of the world's soils are considered de-
graded, i.e. their capacity to provide ecosystem services is significantly
diminished (FAO and ITPS, 2015). Major threats include decrease in
soil organic matter, erosion, landslides, contamination, sealing, com-
paction, decline in biodiversity, salinization, acidification, eutrophica-
tion, and desertification (Kibblewhite et al., 2008). Given the funda-
mental importance of soils in ensuring human wellbeing (Amundson
et al., 2015), soil protection and restoration have become major issues
in environmental science and policy. Key strategies to improve soil
quality include measures to reduce erosion, increase soil organic
matter, maintain appropriate micro- and macronutrient availability,
promote soil biodiversity and enhance rhizosphere processes (Lal,
2015). There are several ways to implement these strategies. For ex-
ample, soil organic matter content can be increased by establishing
perennial grassland or forest, increasing organic matter inputs or re-
ducing tillage. The success of such practices may largely depend on site-
specific environmental conditions such as climate (Ogle et al., 2005)
and land use (Giller et al., 2015). Research is needed to identify and
develop the most appropriate soil restoration measures considering
environmental and socio-economic aspects. It is important to develop
tools that quantify and monitor soil functions and relate soil fertility
and function to land use practices and organic matter management.

Since many soil processes are rather slow, long-term approaches are
needed. Soil monitoring in existing site networks should be extended to
areas where restoration measures have been or will be implemented.
Controlled experiments are needed to explore mechanisms underlying
the successful restoration of soils. These experiments would benefit
from placement in existing long-term research sites to align with ex-
isting observations of environmental parameters and enable the im-
plementation of a Before-After Control-Impact (BACI) design
(Smokorowski and Randall, 2017; Stewart-Oaten et al., 1986). Many
soil properties show considerable spatial variation that complicates the
detection of trends, e.g. in soil organic carbon (Saby et al., 2008). Thus,
for large-scale restoration approaches remote sensing may be appro-
priate for detecting change, e.g. visible, near-infrared (VNIR) and mid-
infrared (MIR) diffuse reflectance spectroscopy (DRS) to measure soil
organic carbon (McDowell et al., 2012).

Q3. Can we quantify the lags between external stressors, biotic
responses and dependent ecosystem processes?

The response of species to natural or anthropogenic drivers is often
delayed (Devictor et al., 2012; Gilbert and Levine, 2013). The extent of
time lags may depend on species traits, the type of disturbance
(Hylander and Ehrlen, 2013) and overall ecosystem complexity
(Cadenasso et al., 2006). A recent theoretical framework proposes that
specific lags occur at each link in cause-effect chains that occur across
different organizational levels of biodiversity (Essl et al., 2015b). In this
way time lags accumulate at more complex organizational levels.
Changes in ecosystem processes may only become visible long after
changes in the underpinning biodiversity components have occurred.
Therefore, time lags have the potential to alter human perception of
biodiversity change particularly when ecosystem service provision is
not immediately affected (Essl et al., 2015a). A proper quantification of
time lags and an understanding of mechanisms that drive them are
indispensable to inform policy and biodiversity management.

The expansion of monitoring networks that measure biodiversity at
different organizational levels and drivers of biodiversity change is
essential for assessing time lags (Essl et al., 2015a). Efforts to compile
historical data should be strengthened to explain the role of time lags in
patterns of contemporary biodiversity and to identify baselines to

which changes can be compared. To improve the understanding of
mechanisms modulating lagged biodiversity response, long-term ex-
perimental approaches are needed. This is especially challenging for
ecosystems dominated by long-lived species such as trees, where the
consequences of changes occurring today may only be visible after
decades or even centuries.

Q4. How do the multi-species interactions that underpin ecosystem
services vary across space and time?

The structure and functioning of an ecosystem depends on its net-
work of interactions. Network linkages deliver many ecosystem ser-
vices, e.g. pollination of wild and cultivated plants, pest control, carbon
and nutrient cycling (de Vries et al., 2013; Hagen et al., 2012). Global
change can lead to considerable alteration of species interactions and
service delivery (Angelstam et al., 2017; Burkle et al., 2013; Gray et al.,
2016). Little is known about how complex interaction networks vary
across space and time (Kissling and Schleuning, 2015). Moreover, biotic
interactions are widely ignored in forecasting biodiversity changes in
relation to climate and land use change (Kissling et al., 2012; Wisz
et al., 2013). Currently there is no widely established monitoring
system to track changes in species interactions over space and time
(Navarro et al., 2017).

Long-term species observations within current site networks need to
be extended by monitoring targeted species interactions in relation to
key drivers of change. A focal set of relevant species interactions and
associated measurements (e.g. via human observations, sensor net-
works, isotope and gut analyses etc.) need to be identified and re-
corded. Given the obvious monetary constraints innovative and cost-
effective approaches that can be applied across environmental gradients
are needed (Hegland et al., 2010). Suggestions for such measurements
have been made by the Group on Earth Observation (Walters and
Scholes, 2017). Monitoring should include a wide variety of biotic in-
teractions with relevance to ecosystem services and explicitly include
below-ground interactions which commonly receive little attention
(van der Linde et al., 2018).

Q5. How is community structure related to landscape level processes?

The composition of local biological communities is determined by
factors acting across spatial scales. The size of the regional species pool
is key (Cornell and Harrison, 2014), reflecting historical and evolu-
tionary processes as well as large-scale environmental gradients
(Svenning et al., 2010). Small scale environmental heterogeneity and
the biophysical properties of habitats have been identified as key fac-
tors influencing species communities at the local scale (Tonkin et al.,
2016). In addition, local biodiversity patterns are determined by
structures and processes beyond the local level (Leibold et al., 2004;
Tscharntke et al., 2012b). For example, species traits and landscape
structure influence dispersal and persistence of species (Hagen et al.,
2012) and thus the composition of local communities. There are still
many unanswered questions resulting from the complexity of associated
processes, interactions and feedback mechanisms. In particular there
are gaps in understanding of interactions of habitat loss and fragmen-
tation as well as the role of the matrix and habitat edges (Spiesman
et al., 2018; Tscharntke et al., 2012b). Research is needed on the re-
lationships between landscape level processes, functional diversity and
important services, for example pollination (Hass et al., 2018) and
biological control (Grab et al., 2018).

To investigate the relevance of the landscape for local communities,
comparative field studies replicated across different landscape settings
are required. Observational studies should be complemented by ex-
periments to assess the relative importance of different drivers and to
identify the mechanisms behind community changes. Data on potential
drivers such as climate, pollution, landscape composition and habitat
connectivity need to be collected beyond the local scale in catchments,
landscapes and regions. Remote sensing may be appropriate for col-
lecting such data.
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3.2. Research questions addressing the impact of anthropogenic drivers on
ecosystems

Q6. How will climate change affect the carbon cycle and what are the
consequences for the provision of ecosystem services?

Climate change influences the cycling of energy and matter in ter-
restrial and aquatic systems via linkages to biogeochemical cycles of
carbon, water and nutrients (Ciais et al., 2013). Although rising CO2

levels have the potential to stimulate plant productivity and hence
carbon sequestration, the strength, sustainability and spatial variability
of this carbon sink remains poorly understood (Donohue et al., 2013;
Lindner et al., 2014; Zhu et al., 2016). Links between biogeochemical
cycles can accelerate the effects of climate change on ecosystems.
Changes in temperature and soil water availability have the potential to
reduce the stability of soil organic matter (SOM) pools (Schmidt et al.,
2011) and to increase carbon and nutrient losses by erosion (Frank
et al., 2015). Such alterations may also increase decomposition rates,
accelerate CO2 efflux and the release of dissolved organic carbon (DOC)
to drainage waters (Camino-Serrano et al., 2016). However, effects of
changing temperature and soil moisture on SOM decomposition rates
remain poorly quantified (Aerts, 2006). Alterations in soil nutrient
availability and plant nitrogen use efficiency in a changing climate may
have marked impacts on ecosystem responses, particularly in pre-
viously nutrient-poor ecosystems (Kanter et al., 2016; Karhu et al.,
2014). Carbon cycle sensitivity to climate change is arguably greatest in
the Arctic, which is also warming fastest (Kramshøj et al., 2016). Fur-
thermore, wetland and permafrost ecosystems in particular have en-
ormous climate-feedback potential due to their large organic carbon
storage in soils and their methane production capacity (Davidson and
Janssens, 2006). Climate change impacts on the terrestrial carbon store
are likely to have profound consequences for the delivery of ecosystem
services including carbon sequestration and the production of drinking
water and food. Climate-induced effects on soil aggregation and dis-
aggregation, soil carbon turnover rates (Banwart et al., 2012) and the
fate of nutrients and toxins released from SOM decomposition
(Karmakar et al., 2015) require further studies. The terrestrial carbon
cycle and fundamental ecosystem services are tightly interlinked. There
is potential for climate change-related tipping points, whereby rela-
tively small changes may result in massive carbon releases and forest
dieback (Lindroth et al., 2009; Seidl et al., 2014). While specific pro-
cesses are being studied in isolation at single sites, a much more com-
prehensive, integrated system-scale approach will be required to un-
derstand the broader complexities of climate change impacts on
ecosystem functions. This will require research infrastructures operated
in a sustainable manner along ecological and land use gradients at
continental or global scale (Djukic et al., 2018). Experiments addressing
e.g. feedbacks or the efficiency of ecosystem management options
should be integrated with long-term observatories.

Q7. What is the impact of increases in the frequency and intensity of
extreme events on ecosystems as compared to gradual long-term
changes in environmental conditions?

Models of climate change project an increase in frequency and in-
tensity of extreme weather events (Kirtman et al., 2013). Extreme
events such as storms, floods, forest fires, droughts or heatwaves can
have strong ecological impacts at various levels of organization, from
individuals (Pipoly et al., 2013), to populations (Roland and Matter,
2013), communities (Mouthon and Daufresne, 2015) and ecosystems
(Allen et al., 2010). Extreme variation in environmental variables can
be more important in shaping biological processes than gradual long-
term changes (Gutschick and BassiriRad, 2003; Thompson et al., 2013).
However both factors do not act independently of each other (Collins
et al., 2011). It remains difficult to disentangle effects of short-term
events from dynamic natural and anthropogenic background processes.
This is particularly true for naturally dynamic ecosystems such as

streams and rivers (Ledger and Milner, 2015). There are considerable
gaps in knowledge regarding the long-term impacts of extreme events
on species interactions, food webs and ecosystem functioning
(Woodward et al., 2016), and ecosystem recovery capacities. Under-
standing the effects of extreme events is necessary to inform manage-
ment targeted at increasing the resilience of ecosystems and sustaining
the provision of ecosystem services. This issue also applies to extremes
not related to climate such as sudden releases of nutrients and pollu-
tants.

Observational research infrastructures are not always sufficiently
equipped to capture extreme events and their impacts. Baseline mea-
surement frequencies may need to be increased and in many cases
adaptive sampling techniques will be needed to quantify episodic be-
havior once “extreme” thresholds have first been defined (Smith, 2011).
Understanding the mechanisms of ecosystem response to extreme
events would benefit from experimental manipulation of key environ-
mental factors in long-term observatory plots. Finally, the spatial scale
needs to be expanded, such as from sampling points to entire river
catchments and landscapes.

Q8. How do nutrient cycles change in the long term?

Nutrient cycles are characterized by complex abiotic and biotic
processes that take place in terrestrial, aquatic, and marine systems and
in the atmosphere. Of particular importance are the element cycles of
carbon (C) nitrogen (N) and phosphorus (P), but also potassium (K),
magnesium (Mg), calcium (Ca), sulphur (S) and micronutrients. Many
of these cycles are heavily impacted by anthropogenic activity and C, N
and P cycles in particular are likely to have transgressed planetary
boundaries, risking destabilization of the Earth system (Steffen et al.,
2015). Current quantification of global N budgets and fluxes is subject
to large uncertainties (Fowler et al., 2013; Shibata et al., 2015).
Knowledge gaps exist regarding the spatial heterogeneity of anthro-
pogenic N inputs and the response of different ecosystems (Shibata
et al., 2015). Nitrogen leaching from terrestrial systems needs to be
better quantified as it affects water quality and the trophic structure of
aquatic ecosystems (Fleck et al., 2017). Research needs for aquatic
ecosystems concern the storage and denitrification of reactive N in
aquifers, the level of nitrate retention by riparian wetlands, and the
character and origin of dissolved organic N (Durand et al., 2011). There
is also the need to better quantify the biogeochemical cycles of other
nutrients. This includes the contributions of artificial inputs, e.g.
through fertilizer use and atmospheric deposition, and natural inputs
through mineral weathering (Meesenburg et al., 2016). It is also clear
that a deeper understanding of the socio-ecological dimensions of nu-
trient cycles is required to improve future predictions (Winiwarter
et al., 2011).

Research infrastructures need to be configured to allow for the best
estimates of major nutrient fluxes across system boundaries as well as
their uncertainties in order to deduce nutrient budgets for the re-
spective ecosystems. Measurements at site, landscape and regional le-
vels should also include internal fluxes such as nutrient uptake and
release by plants as well as conversion by microorganisms. Monitoring
of N-species in aquatic systems is particularly insufficient in southern
and eastern Europe (Durand et al., 2011). Agricultural and urban eco-
systems are currently underrepresented in research networks such as
LTER and CZO despite their importance as sources of nutrients (Shibata
et al., 2015). Measurements of nutrients and their impacts should link
closely to related initiatives such as the Nutrient Network (NutNet,
2019).

Q9.What will be the consequences of climate change for hydrology and
catchment water balances?

Climate change is projected to cause significant shifts in the global
hydrological cycle (Jiménez Cisneros et al. 2014). For example, river
flow regimes are predicted to change considerably by 2050, the direc-
tion and magnitude of change depending on the region (Arnell and
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Gosling, 2013). Flood frequency may change in some regions of the
world, with consequences for human populations, energy production,
forest and agricultural production (Arnell and Gosling, 2016).
Groundwater recharge will be affected by climate, as well as land use
and vegetation cover change in many regions (Taylor et al., 2013). The
predicted changes in hydrology are expected to significantly affect the
availability of water resources also for human use (Schewe et al., 2014).
Water availability is often a dominant driver of inter-annual variability
in ecosystem productivity, and thus changes in hydrology provide an
important feedback to climate (Jung et al., 2017). Hydrological models
represent a key requisite to quantify components of the hydrological
cycle. Current models predicting global hydrological change are subject
to a number of uncertainties (Döll et al., 2016). Major aspects that
contribute to uncertainty include insufficient quantification of human
water extraction, limited knowledge on the response of vegetation and
land cover to future climate and levels of carbon dioxide, and un-
certainties in climate projections. The latter problem has been identi-
fied as a major limitation for projections of river flow regimes (Arnell
and Gosling, 2013), flood risks (Arnell and Gosling, 2016), and
groundwater recharge (Taylor et al., 2013). Further challenges refer to
the exploration of differences among models, the consideration of
seasonality in water availability and use, and the inclusion of ground-
water flows (Döll et al., 2016). An increasing number of studies deal
with the linkages between climate change, hydrological patterns, bio-
diversity and ecosystem functioning (Domisch et al., 2013; Kakouei
et al., 2018). While the effects of changes in hydrology on biodiversity
become more and more clear there is still an insufficient understanding
of climate change effects (i.e. hydrological alterations) on ecosystem
functioning.

Research infrastructures are needed to provide data on the re-
lationships between climate, hydrology and ecosystem functioning
across spatial scales. Limited data constrains the analysis of ongoing
hydrological changes as well as predictions on the development of the
hydrological cycle under future climate scenarios. A lack of global
groundwater data limits the understanding of climate change impacts
on global groundwater stocks and constrains the development of
adaptation strategies (Taylor et al., 2013). Additional measurements
are needed to make better use of remote sensing data, for example by
mapping habitat change or soil moisture content. Detection and attri-
bution of changes in freshwater systems are hampered by limited
measurements of river discharge and direct measurements of evapo-
transpiration in many regions (Döll et al., 2016).

Q10. What are the major impacts of invasion by alien species on
ecosystems and on society, and what is their magnitude compared to
other drivers of global change?

Biological invasions represent a major component of global change
(Ricciardi et al., 2017; Simberloff et al., 2013). Yet, the magnitude of
their impacts is heavily debated (Davis et al., 2011; Simberloff et al.,
2011). This lack of consensus hampers the ability of decision makers to
react to increasing numbers of alien species (Dawson et al., 2017;
Seebens et al., 2017). There has been progress in developing an inter-
nationally accepted risk assessment of alien species according to their
environmental impacts (Blackburn et al., 2014; Hawkins et al., 2015;
McGeoch et al., 2015). Recently, a comparable method for socio-eco-
nomic impacts has been proposed (Bacher et al., 2018; Nentwig et al.,
2016). However, many aspects of biological invasions are not known, as
data on the occurrence of invasive alien species, their status and im-
pacts are not routinely collected over large spatial scales (Latombe
et al., 2017), even though for some taxonomic groups respective data
have become available recently (Dyer et al., 2017; Pyšek et al., 2017).

Existing long-term research networks such as LTER sites provide a
promising platform to study the establishment, spread and impacts of
alien species, and their interactions with other drivers of global change.
Information on alien species need a greater consideration in standard
measurements across site networks. These should include species that

pose serious risk for human well-being such as pest species and disease
vectors. Species listed under the European Commission's Regulation on
Invasive Alien Species (European Commission, 2016) may be a starting
point. Efforts to establish and further develop a biodiversity monitoring
system that comprises entire taxonomic groups and extends spatial
coverage for known hotspots of invasion (e.g. urban areas, coastal re-
gions) should be strengthened. Such comprehensive coverage max-
imizes the potential to analyze processes at community and ecosystem
levels. Any action towards implementing monitoring and research on
alien species should fit into global initiatives to establish a monitoring
of biological invasions (Latombe et al., 2017) and to standardize as-
sessments of their impacts (Bacher et al., 2018; Hawkins et al., 2015).

3.3. Research questions on ecosystem services and socio-ecological systems

Q11. How does biodiversity affect the provision of regulating
ecosystem services?

Biodiversity strongly determines ecosystem functioning and eco-
system service delivery (Harrison et al., 2014; Soliveres et al., 2016).
This link is particularly tight for provisioning services underpinned by
primary productivity, such as wood and fodder production (Cardinale
et al., 2012). Close relationships have also been proven for some reg-
ulating services such as nutrient mineralization and carbon sequestra-
tion, but the role of biodiversity remains less clear for other services,
e.g. freshwater purification or long-term carbon storage (Cardinale
et al., 2012). Limited knowledge exists on the role of different biodi-
versity components for service delivery, the importance of the en-
vironmental context and the mismatch between functions measured
and the final service provided to society (Balvanera et al., 2014). Re-
search is also required to understand the role of structural aspects of
biodiversity for service provision, e.g. the relationship between pro-
cesses mediated by forest canopy structure and carbon storage
(Hardiman et al., 2013).

Monitoring is needed to assess links among biodiversity, ecosystem
functions and resilience (Oliver et al., 2015), and the actual delivery of
ecosystem services. Research needs to include observational, com-
parative and experimental approaches and should be co-designed in
researcher-stakeholder partnerships. Observational studies need to be
conducted under representative management conditions (Balvanera
et al., 2014) that should be performed at management- and policy-re-
levant scales. Site networks need to cover relevant environmental,
landscape history and socio-economic gradients. Biodiversity mea-
surements should include a broad range of taxonomic groups and life
history traits. Primary producers, above-ground herbivores and soil
decomposers are particularly relevant for the provision of multiple
ecosystem services (Soliveres et al., 2016), whereas specific groups may
be relevant for particular services, e.g. pollinators.

Q12. How can an increasing human population be fed in an
environmentally sustainable way?

Global agricultural production must grow to meet the demands of
an increasing human population, while at the same time reducing ne-
gative environmental impacts (Foley et al., 2011). Several approaches
to alternative agricultural systems that ensure both aspects have been
proposed such as diversified farming, sustainable intensification, eco-
logical intensification, agro-ecological farming and organic farming
(Bender et al., 2016; Garibaldi et al., 2017). Some concepts put a strong
focus on technological advancements aiming at enhancing resource use
efficiency, e.g. precision agriculture (see McConnell et al., 2017 for an
overview). However, such technology-oriented concepts have been
criticized for neglecting broader societal needs (Loos et al., 2014).
Conversely, it has been argued that introducing practices like organic
farming at large scales may lead to a global reduction rather than an
increase of agricultural production (Leifeld, 2016; Seufert et al., 2012).
Large scale and long-term assessments of the overall performance of
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alternative farming practices are limited. Many studies focus on direct
economic effects, e.g. yield measurements, without taking into account
a wider range of potential benefits to society (Garibaldi et al., 2017).
There are a number of unanswered questions that constrain a realistic
assessment of costs and benefits across scales and stakeholders. Open
questions remain regarding the development of a range of ecosystem
components under alternative management practices (e.g. soil evolu-
tion), the resulting consequences for ecosystem service delivery and the
implications for society (Bender et al., 2016; Garibaldi et al., 2017).
Whether food security and biodiversity conservation can be best
achieved by pursuing a strategy that integrates both goals in the pro-
duction process (land sharing) or that favors a spatial segregation (land
sparing) is up for debate (Tscharntke et al., 2012a).

Research infrastructure development must account for the eco-
system and socio-economic dimensions of this question. Examining the
effects of alternative agricultural approaches on ecosystems, and on soil
restoration (Q2, above), requires long-term experiments and observa-
tions under realistic management conditions. An evaluation of how
existing long-term agricultural experiments (Berti et al., 2016;
Rasmussen et al., 1998) can be included should be made. Essential
measurements include crop and livestock productivity, biodiversity
components and a range of abiotic parameters that underlie the supply
of ecosystem services. Abiotic parameters should be suited to the
quantification of carbon-, nutrient- and water budgets as well as
changes in soil structure. Measurements of biodiversity should include
soil organisms as they play a key role in sustainable intensification
practices (Bender et al., 2016), but also species that provide supporting
and cultural services. Variable and indicator selection should not only
focus on the quantification of provisioning services but also include the
whole suite of ecosystem services that may benefit the wider commu-
nity (Garrido et al. 2017a, 2017b). Such a holistic approach is necessary
to assess the overall socio-economic dimensions of alternative agri-
cultural approaches. The success of alternative approaches is highly
context-dependent (Seufert et al., 2012). Therefore, assessments need to
be conducted at relevant large scales, consider different environmental
and socio-economic contexts, and account for biodiversity opportunity
costs i.e. the value of alternative ecosystems. Cost/benefit analysis from
multiple stakeholders’ perspectives represents an essential component
of such assessments. LTSER platforms will be suitable research infra-
structures for that purpose, provided that they cover spatial extents
large enough to include rural-urban gradients (Angelstam et al., 2019).

Q13. What are the most promising management options to foster
adaptation of ecosystems to climate change?

Climate change will strongly affect ecosystems and their capacity to
deliver essential ecosystem services (Settele et al., 2014), but large re-
gional variation in effects and changes in demands is expected. Losses
in overall ecosystem service supply due to climate change and asso-
ciated processes are predicted to exceed gains under low mitigation
scenarios (Scholes, 2016). Adaptation strategies will therefore be
needed to increase the resilience of the most threatened services. These
strategies will require maximizing the adaptive capacity of ecosystems,
i.e. their ability to adjust to climate change in ways that sustain eco-
logical functions or that enable desired ecosystem transitions
(Chornesky et al., 2015). Numerous adaptive options are currently
proposed that are likely to differ in their potential effectiveness and
contribution to secondary (unintended) effects (Felton et al., 2016;
Fleck et al., 2017). Research into a wide range of potential solutions
will be necessary to identify those most appropriate to address multiple
conservation goals. Adaptation measures that have already been im-
plemented need to be accompanied by robust monitoring procedures to
assess their efficacy and enable changes where they are perceived to be
ineffective. This is particularly important if uncertainty on the expected
outcomes is high and if there is pressure to reach immediate decisions
(Gillson et al., 2013).

For some ecosystems and ecosystem services, long-term adaptive

management experiments will be required to elicit the best adaptive
strategies. To assess the success of management measures long-term
monitoring of relevant ecosystem components is necessary. Both ex-
perimental and observational infrastructures should cover large spatial
scales and be distributed among socio-economic regions and biomes. It
may be necessary to adjust the spatial design of existing research in-
frastructures in order to capture the appropriate scales at which man-
agement for climate change adaptation takes place. Such work requires
close collaboration with a variety of stakeholders responsible for im-
plementation of adaptation strategies, e.g. agriculture, forestry and
water regulation. Measurements should include the management target
(e.g. ecosystem service or conservation goal) as well as potential eco-
system components that may be subject to unintended effects.

Q14. Are ecosystem services provided by alien species comparable to
those provided by native species and what is the proper currency for
valuing positive and negative impacts?

Alien species can strongly affect ecosystem services (Vilà and
Hulme, 2017), but their impacts may vary (Katsanevakis et al., 2014).
Many species, or genetically improved variants, have been deliberately
introduced to enhance ecosystem service supply, such as the provision
of timber (Woziwoda et al., 2014) or the regulation of pests by bio-
control (Roy et al., 2016). Many of them also deliver ecosystem services
beyond their intentional role, e.g. pollination services by introduced
bees (Dick, 2001). Others can have detrimental impacts, e.g. by mod-
ifying disturbance regimes, water quality or hydrological services (Vilà
and Hulme, 2017). Further research is required into the role of alien
species in ecosystems degraded by other drivers of global change that
no longer support the original native communities (“novel ecosystems”,
Hobbs et al. (2009)).

Basic infrastructural needs are consistent with those formulated for
research Q10 reviewed above, i.e. to establish comparative studies
among LTSER platforms with different ratios of alien vs native species,
and a targeted monitoring system at multiple spatial scales. Apart from
large-scale observations, experiments built on invaded vs. non-invaded
plots can help to improve the understanding of mechanisms of service
supply and suppression, respectively (Bacher et al., 2018; Kumschick
et al., 2015). To address this research question, relevant ecosystem
processes used as proxies for estimating potential ecosystem services
need to be included in both observational and experimental studies.
Socio-economic approaches are needed to value service supply by alien
vs. native species from different stakeholder's perspectives (Kumschick
et al., 2012).

Q15. What is the most effective approach to valuing ecosystem services
to ensure that ecosystem management protects and enhances ecological
status?

Many policies aimed at regulating anthropogenic pressures on
ecosystems have adopted the concept of ecosystem services as a me-
taphor and means of advocacy, although the legislative framework re-
mains important. The concept has launched a large and expanding field
of research, which seeks to measure and value human and societal
dependence on ecosystems (Norgaard, 2010). While biodiversity cap-
tures the potential supply of ecosystem services in terms of what can be
derived from species, structures and processes (Brumelis et al., 2011),
the ecosystem services concept focuses on the benefits to human well-
being in terms of provisioning, regulating, supporting/habitat and
cultural dimensions. However, this link is not always straightforward as
ecosystems may also incur disservices, and there are trade-offs among
services, stakeholders at different governance levels and spatial scales.
In addition, abiotic resources need to be considered (Field et al., 2015),
and human investment is often required to realize the potential of
biodiversity to deliver human benefits (Lele et al., 2013). Merlo and
Croitoru (2005) provide a good overview of economic valuation tech-
niques of tangible goods and intangible services and values. It is still
under discussion whether economic arguments help improve ecosystem
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management and resilience. So far valuation of ecosystem services has
been dominated by biophysical assessments and economic valuation
approaches (Nieto-Romero et al., 2014). In contrast, relatively little
attention has been devoted to valuation based on stakeholders' per-
ceptions, notwithstanding that a stakeholder perspective is critical to
successfully tackle land management issues linked to human well-being
(Garrido et al. 2017a, 2017b). Hence, qualitative socio-cultural valua-
tion is important to identify the portfolios of ecosystem services de-
manded by different stakeholder categories at different levels of gov-
ernance. The potential supply and demand of ecosystem services need
to be mapped as input to landscape planning, management and stew-
ardship (Raudsepp-Hearne et al., 2010). Research is also needed to
understand how values based on different stakeholders’ perspectives
influence decision making in environmental issues.

Distributed research infrastructures can be used to design social
experiments to illuminate value formation and decision making. One
approach to knowledge production and learning is to compare multiple
landscapes as socio-ecological systems across various dimensions.
Angelstam et al. (2013) reviewed the landscape concepts’ biophysical,
anthropogenic, and intangible dimensions and exemplified how dif-
ferent landscape concepts can be used to derive measurable variables
for different sustainability indicators. Hypotheses could be tested by
choosing samples of socio-ecological systems located along gradients of
the three above-mentioned dimensions across continental scales. This
approach can improve collaborative learning about development to-
wards sustainability in socio–ecological systems. Similarly, analyses of
multiple landscapes improve the understanding of the role of context
for governance and management. The suite of LTSER platforms in
Europe (Angelstam et al., 2019), as well as other landscape approach
concepts such as Biosphere Reserve and Model Forest initiatives, pro-
vides good opportunities to implement that approach (Angelstam et al.,
2018; Elbakidze et al., 2018).

3.4. Research questions dealing with methods and research infrastructures

Q16. How can we detect critical thresholds/ tipping points in
ecosystem response?

Tipping points are defined as critical points where a system abruptly
and potentially irreversibly shifts into another state. Abrupt changes in
response to certain drivers have been demonstrated at local and re-
gional levels or for specific ecosystems (Kosten et al., 2012) and socio-
ecological systems (Reyers et al., 2018) whereas the existence of global
tipping points is subject to ongoing debate (Montoya et al., 2018;
Rockström et al., 2018). A detection of critical thresholds in advance
may provide management opportunities to prevent non-resilient
changes (Pace et al., 2017). A series of early warning signals have been
proposed to serve as indicators for the detection of imminent regime
shifts (Dakos et al., 2012). However, analyses of long-term data have
shown that these indicators are often inconsistent in their inferences
(Gsell et al., 2016). False positives, i.e. the indication of early warning
signals without significant nonlinear changes, have been highlighted as
a particular problem (Burthe et al., 2015). Therefore, alternative resi-
lience measurements have been suggested that take into account si-
multaneous data sets from multiple sources, e.g. spatial data and trait
information (Clements and Ozgul, 2018). The combination of high-
frequency measurements and remote sensing may provide extended
opportunities to detect early warning signals (Dakos et al., 2012).
Ecosystem research infrastructures such as LTER need to provide and
integrate such data, and they must enable manipulative experiments to
investigate the relationships between drivers and regime shifts
(Carpenter et al., 2011; Dakos et al., 2012).

Q17. Given differences in monitoring methods, how can changes in
biodiversity be compared among different sites and species groups?

Many research site networks such as LTER sites and LTSER

platforms have been established in a bottom-up manner. Selection of
methods to measure biodiversity has often been guided by specific
purposes, local environmental contexts or different research traditions.
Consequently, there is considerable variation in methodologies among
sites. This hampers the comparability of data sets and their analysis
across large spatial extents. The harmonization of methods should be a
primary goal to address this problem (Mollenhauer et al., 2018).
However, any changes in methodology potentially put the integrity of
existing long-term data series at risk. Therefore, the development of
statistical tools to integrate and analyze heterogeneous data may pro-
vide a more promising approach (Henry et al., 2008; Pagel et al., 2014).
Thorough efforts are needed to enable the joint analysis of large data
sets arising from citizen science (Isaac et al., 2014) and the emergence
of new methods for biodiversity assessment such as remote sensing,
camera trapping or soundscaping (Schmeller et al., 2015). Given the
rapid development of such techniques the challenges associated with
methodological heterogeneity will remain an important issue in the
future.

Q18. How can we reduce uncertainties in climate change projections
provided by Earth system models?

Projections of climate change by global and regional climate models
are subject to uncertainties derived from various sources (Flato et al.,
2013; Foley, 2010) such as the treatment of aerosols, convection
parameterization, treatment and parameterization of clouds, the emis-
sion scenarios or the climate system's internal variability. Other un-
certainties arise from the treatment and parameterization of processes
that link the climate system and major biogeochemical cycles such as
the carbon (Bradford et al., 2016; Friedlingstein, 2015), water (Clark
et al., 2015) and nutrient cycles (Thomas et al., 2015) cycle. Improving
the parameterizations of such processes that are important for climate
simulations is necessary to reduce overall uncertainty. Well-in-
strumented research sites can be used for model testing and develop-
ment through an optimization in the parameterization and process re-
presentations in the land surface schemes of global and regional climate
models. More emphasis should be put on the harmonization of field
methods to enable the use of data from different national observation
networks for modelling purposes. For example, weather stations should
ideally be operated according to World Meteorological Organization
standards. Sites encompassing harmonised measurements across all
domains; i.e., biosphere, hydrosphere, cryosphere, lithosphere and at-
mosphere are particularly valuable for the analyses of feedback pro-
cesses and interactions between systems (Hari et al., 2016), as needed
for improving Earth system models.

Q19. What emerging technological developments have the greatest
potential to benefit ecosystem research?

Ecosystem research deals with complex challenges from dynamic
systems shaped by the interactions of multiple drivers and ecosystem
components across a range of spatial and temporal scales. New tech-
nologies that allow for extended measurements in space, at higher
frequencies and likely at lower costs now offer powerful opportunities
to better understand ecosystem functioning and response to multiple
stressors. Wireless sensor networks (WSN) that deliver real-time data at
high spatial resolution are one example of such technology (Othman
and Shazali, 2012). WSNs are increasingly applied for monitoring and
research purposes, e.g. monitoring of water quality (Blaen et al., 2016;
Marcé et al., 2016), forest soil water variability (Rosenbaum et al.
2012), forest fire detection (Molina-Pico et al., 2016), or tracking of
animal movements (Dressler et al., 2016). Recent work on urban air
pollution demonstrates that good data quality can be achieved if net-
works are calibrated using standard measurements (Moltchanov et al.,
2015). Many questions remain regarding their overall costs, stability,
sensitivity, duration and required effort to manage data (Kumar et al.,
2015). Similarly, opportunities to apply remote sensing technologies for
environmental research are evolving rapidly (Lausch et al., 2016). In
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this context, it is important to consider scaling issues when transferring
information collected at local level to various scales where ecosystem
management and decision making takes place (Abelleira Martínez et al.,
2016; Wu and Li, 2009). A growing number of open software products
facilitate sampling, management (e.g. GeoNetwork, 2019) and analysis
of data derived from such technologies. Given the magnitude of op-
portunities there needs to be a focused discussion on how a standard
configuration of comprehensive environmental monitoring sites should
be accomplished. The establishment of sites dedicated to research and
development could promote the implementation of emerging technol-
ogies into existing research infrastructure networks. The implementa-
tion of comprehensive instrumentation requires new user-specific and
easy-to-use assistance tools for data provision and processing. For ex-
ample, online toolboxes have recently been developed to enable the
analysis of high frequency data from lakes (Obrador et al., 2016). Given
the diversity of existing data sources, data acquisition tools and scales,
strategies and methods need to be developed to bring research activities
and products from science to a more service-oriented level.

Q20. How can new molecular high-throughput technologies be used to
analyze the links between genetic diversity, functional diversity and
ecosystem processes?

Although there has been much progress in using genetic methods in
ecology, there are major knowledge gaps concerning the importance of
genetic diversity for patterns and processes at the ecosystem level
(Crutsinger, 2016; van der Linde et al., 2018). The increasing avail-
ability of high-throughput sequencing platforms (Reuter et al., 2015)
and rapidly advancing genomic methodologies could revolutionize this
area of research, if data can be matched to long-term measurements of
ecosystem processes. However, there remain unsolved problems asso-
ciated with a broad-scale application in ecosystem research. Sequencing
error rates are still high for some techniques, and data processing and
analysis are computationally intensive (Bruford et al., 2017). To max-
imize benefits for ecosystem research considerable investment in in-
frastructure is needed, including appropriate sampling and lab facilities
and sophisticated infrastructures for data management and analysis.
Data infrastructures are particularly important to integrate genomic
and other data on ecosystem structures and processes. The increasing
awareness of genomics in all aspects of biodiversity research has led to
the establishment of international initiatives to promote and standar-
dize the approach such as the Genomic Observatory Network (Davies

et al., 2014) and the Genomic Standards Consortium (GSC, 2019). Any
extensions of existing site-based ecosystem research infrastructures
should conform to these wider initiatives to ensure the maximum use of
data by the scientific community.

4. Discussion

4.1. Research questions

This horizon scanning identified emerging research questions that
can guide the future development of long-term ecosystem research in-
frastructures. Twenty priority questions were identified
(Supplementary material 2), forming four overarching themes (Fig. 1).
These themes were arranged along a gradient that reflects increasing
complexity and policy relevance (Fig. 2). In this context, theme 4
(methods and research infrastructures) represents a cross-cutting issue.
Research approaches corresponding to themes 1–3 and the required
infrastructures can also be classified along this gradient. Subject-spe-
cific research in a single locality may be sufficient to address basic
questions. However, most of the research questions identified require
inter- and transdisciplinary, cross-site research in a coordinated net-
work. Such network-based approach is also necessary to investigate
topics of high policy relevance that concern the interactions between
ecosystems and society.

Clearly, the selection of research questions was influenced by the
personal interests of the participants, and is not representative of the
views of the entire European environmental and socio-ecological re-
search community. For example, the numerous submissions of ques-
tions related to methods and infrastructures reflect that many re-
searchers work with the operation and management of field sites and
monitoring networks. In contrast, social systems and economic aspects
were arguably under-represented even though some of them were
partly addressed by questions related to ecosystem services. By ap-
plying a stratified approach to the scoring process we tried to mitigate
potential bias towards certain topics. Many other important research
questions may arise from the linkages between the topics identified in
this exercise, e.g. interactions between species (Q4), carbon cycle (Q6)
and maintenance of ecosystem service provision under climate change
(Q13). Horizon scanning as applied in the present study aims to provide
first insights into emerging or insufficiently addressed topics. Sub-
sequent work may apply more rigorous social science methods to get a

Fig. 2. Results of the horizon scanning: The relationship between thematic complexity and policy relevance of research infrastructures, research themes and eco-
system research. Triangles are symbolizing quantity (e.g., there are many more “regular sites” than “LTSER platforms”). Site categories refer to Mirtl et al. (2018).
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deeper understanding of the identified issues.
Despite encouragement to focus on specific emerging topics, parti-

cipants tended to ask more generic questions and they also gave these
the highest scores. This may partly be due to the choice of the method.
The possibilities to guide the discussion and selection process online
were limited compared to workshops with higher intensity of personal
exchange. Nevertheless, the knowledge gaps identified emphasized a
number of important but currently under-researched areas. Obviously,
the participants found it more important to address the complexity
behind these questions and to develop methods and infrastructures to
explore it, rather than select subject-specific questions with a narrow
focus. This is particularly true for research questions concerning in-
teracting systems (multi-species interactions – Q4, human-ecosystem
interactions – Q6 to Q14), relating to different spatial scales (landscape
level processes and local biodiversity – Q5) or dealing with processes
that involve multiple feedback mechanisms (biogeochemical cycles –
Q6, Q8, Q9). Infrastructure-related limitations are among the reasons
why this complexity has only been addressed to a limited extent so far.
For example, there are variables that are hardly considered in current
monitoring programs, such as interactions between organisms (Q4).
Consequently, ecosystem services based on such interactions cannot be
quantified properly, e.g. pollination. Other variables are not sufficiently
measured across space and time, and methods are not harmonised. This
complicates large-scale analyses which require comparable and scalable
data such as those needed to answer Q5, Q13 and Q14. Many variables
are collected spatially and temporally independently, so that they
cannot be related to each other. The problem concerns biotic, abiotic
and socio-economic measurements and it inhibits research on cause-
effect relationships, e.g. between anthropogenic drivers and ecosystem
responses (Q6-10). These infrastructural constraints apply to several
research questions discussed above. In the following the main cross-
cutting issues are summarized and possible solutions are suggested.

4.2. Cross cutting issues for research infrastructure development

4.2.1. Whole-system approach
The horizon scanning approach used in this study also revealed

some cross-cutting issues and challenges that are important for the fu-
ture development of long-term ecosystem research infrastructures.
Specialized research infrastructures have often been developed to ad-
dress specific research domains. Their future development would ben-
efit from adopting a whole-system approach (Mirtl et al., 2018). This
requires simultaneous measurements of a broad range of abiotic, biotic
and socio-economic variables over a range of spatial scales. One way to
implement such a strategy is to set up a network of master sites for
intensive measurements such as the Australian SuperSite Network
within TERN (Karan et al., 2016). However, the costs of such a network
will often limit its spatial extent. The combination of existing research
sites with different thematic priorities offers an alternative way to cover
a wide range of variables (Haase et al., 2018). Such networks of co-
located sites offer the possibility to use existing infrastructures and data
more effectively. The adoption of a whole system approach also implies
a stronger consideration of socio-economic measurements, as intended
by the concept of LTSER platforms (Angelstam et al., 2019; Gingrich
et al., 2016; Haberl et al., 2006).

4.2.2. Developing standard observations and measurements
Standardized long-term data sets that cover large spatial extents are

necessary to address environmental problems of global relevance
(Haase et al., 2018; Kissling et al., 2018a; Latombe et al., 2017;
Skidmore et al., 2015). However, many research infrastructure net-
works such as LTER are locally organized, which leads to a high degree
of methodological heterogeneity. Ideally, a set of standard variables
should be defined to fit into various conceptual frameworks and to be
used to inform a wide range of indicators (Haase et al., 2018). It must
be accepted that it will not always be possible to achieve the desired

level of methodological harmonization, e.g. if new scientific questions
make it necessary to introduce novel methods. Apart from harmoniza-
tion of measurements there are further possibilities to increase inter-
operability among research sites and networks. In particular the de-
velopment of standardized workflows for data management, processing
and exchange is necessary to integrate and analyze data from different
sources and to make them accessible to the research community
(Kissling et al., 2015).

4.2.3. Multiple use of research infrastructures
Participants highlighted the importance of experimental manipula-

tions to address fundamental questions in ecosystem research.
Experiments facilitate the understanding of single processes by con-
trolling others, but do not always reflect “real world” conditions and
findings are not always applicable to whole ecosystems. In contrast,
observations can inform on state and condition over a wide range of
spatial and temporal scales but often do not explain causal relation-
ships. Experiments embedded within long-term observatory plots may
enable the most mutually beneficial exploitation of the two approaches
(Djukic et al., 2018). Long-term observational networks such as LTER
are particularly well suited for the establishment of coordinated dis-
tributed experiments (Fraser et al., 2013).

4.2.4. Increase flexibility in monitoring schemes
Many long-term research site networks are based on a fixed spa-

tiotemporal observation design. However, the highly dynamic and in
many cases unpredictable nature of environmental change, as well as
human responses, may only be addressed using flexible monitoring
approaches. For example, to evaluate the success of adaptation mea-
sures for ecosystem management under climate change (Q13), the ad-
justment of the spatial design of site networks will be necessary to
coincide with management scales. Investigating the impacts of extreme
climatic events (Q7) may require temporal adjustments, i.e. temporarily
increasing the frequency of measurements during and after episodes.
The increasing availability of low-cost data loggers that enable high-
frequency data acquisition (Q19) partially meets this requirement. In
view of limited resources, strategies need to be developed to adapt
established LTER sites and LTSER platforms to newly emerging ques-
tions while sustaining the integrity of long-term time series.

4.2.5. Balancing technological advancements and long-term time series
continuation

There will be methodological advancements in many fields of eco-
system research with new technologies providing measurements in
higher quantity and quality. This will undoubtedly increase the ability
to understand complex processes at spatial scales that could not be
addressed before. However, new methods can threaten the continuity of
long time series produced by more traditional methods when the former
are not fully compatible with the latter. Furthermore, there are also
risks that new methods are rapidly superseded by next generation
technologies, preventing the further development of robust time series.
Research infrastructures need to be flexible with regard to new methods
but we need strategies to ensure consistency and comparability of
measurements across time (Ellingsen et al., 2017).

4.2.6. Ecosystem services and stakeholder engagement
Quantifying the potential supply of ecosystem services as well as

stakeholders’ demands represents a key requirement to address several
research questions. While some ecosystem services can be measured
directly, the majority must be quantified using proxies (Eviner et al.,
2012; Kandziora et al., 2013). The provision of many ecosystem ser-
vices, especially cultural ones, involves ecosystem management. This
requires new methods to integrate biophysical data with quantification
of human perception (Vaz et al., 2018). LTSER-platforms need to pro-
vide opportunities to value differences in ecosystem service demand
among stakeholders and levels of governance (Garrido et al. 2017a,
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2017b). To assess a broad range of ecosystem services, efforts to
prioritize and harmonize the corresponding measurements across sites
and platforms need to be intensified (Angelstam et al., 2019). Finally,
different bundles of ecosystem services contributing to human well-
being (Balvanera et al., 2017) need to be captured by developing
methods for valuation, including monetary and non-monetary methods
(Merlo and Croitoru, 2005).

5. Conclusions

To address complex scientific issues sophisticated research infra-
structures are required that operate in the long-term, and cover large
spatial scales as well as multiple dimensions of ecosystems and socio-
ecological systems. The combined network of LTER sites, LTSER plat-
forms and Critical Zones Observatories offers great potential as a dis-
tributed infrastructure. A crucial task is the harmonization of variables
and methods, as well as the integration and access of data. Closer co-
operation with other monitoring networks and initiatives is essential to
achieve this goal. Addressing complex questions also requires the
combination of experiments, observations, modelling and comparative
studies. The ability to respond flexibly to emerging issues in space and
time represents a key requirement of future research infrastructures.
Lastly, research infrastructures need to enable transdisciplinary re-
search that goes beyond natural sciences. LTSER platforms should be
developed into pilot areas that will allow researchers, managers and
decision makers to make evidence-based choices which centre on
finding the balance between sustaining landscapes and the demands
placed upon them by different stakeholders.
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